Keratoconus Associated with Cornea Guttata - Implication for Disease Progression

Okasha M $G^{1,3}$, Suffo S¹, Daas L¹, Langenbucher A², and Seitz B¹

¹Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany ²Experimental Ophthalmology, University of Saarland, Homburg/SaarUKS, Germany ³Department of Ophthalmology, Al – Azhar University, Cairo, Egypt <u>mgaber.okasha@gmail.com; shady.suffo@uks.eu; loay.daas@uks.eu; achim.langenbucher@uks.eu;</u> <u>berthold.seitz@uks.eu</u>

Abstract: Purpose: To describe the diagnostic considerations in patients with keratoconus (KC) and concomitant cornea guttata (CG). Patientsand Methods: The study included 31 eyesof 31 patients, 12 eyes with KC and CG (group I), 7 eyes with CG only (group II), 6 eyes with KC only (group III), and 6 normal eyes (group IV). Complete ophthalmologic examination was performed, including Scheimpflug rotation tomography, specular microscopy and endothelial cell count. Setting: Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany. Design: Retrospective, comparative study. Results: The mean age was 49.4 ± 19.7 years, 18 patients were female (58.1%). The mean best-corrected visual acuity (BCVA) in LogMar was 0.5 ± 0.4 in group I, 0.6 ± 0.3 in group II, 0.4 ± 0.1 in group III and 0.0 ± 0.0 in group IV. The mean corneal thickness of the thinnest point was $479 \pm 43 \mu$ min group I, $583 \pm 49 \mu$ min group II, $475 \pm 39 \mu$ min group III and $567 \pm 22 \mu$ min group IV. Conclusions: KC and CG may coexist in the same patient. Progression of the dystrophy may be masked by corneal ectatic thinning while progression of KC may be masked by endothelial decompensation and thickening. VA cannot be used as a predictor for the presence concomitant KC and CG. The diagnosis should consider complete ophthalmic examination, corneal topography, along with specular microscopy.

[Okasha M G, Suffo S, Daas L, Langenbucher A, and Seitz B. Keratoconus Associated with Cornea Guttata - Implication for Disease Progression. *Nat Sci* 2018;16(9):99-102]. ISSN 1545-0740 (print); ISSN 2375-7167 (online). <u>http://www.sciencepub.net/nature</u>. 14. doi:10.7537/marsnsj160918.14.

Keywords: Keratoconus, guttae, Fuchs, dystrophy

Introduction

KCis a bilateral progressive, non-inflammatory corneal stromal thinning disorder that leads to corneal ectasia. It is characterized by progressive myopia and astigmatism leading to decreased uncorrected and spectacle-corrected visual acuity. The etiology is multifactorial, allergic processes and eye rubbing are possible causes in genetically susceptiblepatients.^{1, 2}Thyroxin (T4) may also play a role in KC pathophysiology, most likely mediated by T4 receptors.³

KC can occur together with corneal dystrophies, and Fuchs endothelialcorneal dystrophy (FECD) is the most common.⁴ FECD is also bilateral, may be markedly asymmetric and affects more females (4:1).⁵ FECD ranges from asymptomatic cornea guttatato a decompensated cornea with stromal edema, epithelial bullae, and subepithelial fibrosis.⁶ Cornea guttata may exist either as a primary, age-related, degenerative type or a secondary, post inflammatory type. Other corneal conditions that may resemble cornea guttae include age-relatedperipheral Hassall-Henle warts and pseudoguttata which may occur post-inflammation orpost-traumatic.⁷ The genetic basis of FECD is complex and heterogeneous, demonstrating variable expressivity and incomplete penetrance.8 Occasionally, the diagnosis of one condition is

underestimated or even missed due to considerable overlapping.⁹

The purpose of this study was to describe the diagnostic considerations in patients with KC and concomitant CG.

Patients and Methods

In this retrospective study, 31 patients were included, 12 eyes with KC and CG (group I),7 eyes with CG only (group II), 6 eyes with KConly (group III), and 6 normal eves (group IV). Complete ophthalmologic examinations were performed in all including best-correctedvisual patients. acuity (BCVA), slit lamp biomicroscopy, tonometry and Scheimpflug dilated fundoscopy, rotational (Pentacam HR, Oculus, Wetzlar, tomography Germany), and specular microscopy (EM 3000, Tomey, USA).

CG and FECD were detected at slit-lamp biomicroscopy, and their degree of severity was subsequently assessed by specular microscopy and Pentacam. We graded CG based on Gottsch's modification of the scale proposed by Krachmer et al.^{10, 11}(table 1).

KC was diagnosed based on a comprehensive clinical evaluation, including slit-lamp biomicroscopy, corneal tomography, topography, and pachymetry. KC was graded by Amsler-Krumeich (AK) classification of KC (table 2). In the AK system, the severity of keratoconus is graded from stage 1- 4 using spectacle refraction, presence or absence of scarring, centralkeratometry, and central thickness.¹²

The main outcome measures included: Age, sex, BCVA, theseverity of CG, keratometric readings [flattest K (K1), steepest K (K2), average K (Km) and K maximum (Kmax)], pachymetric measurements at the thinnest point (TP) and endothelial cell count (table 5). All data were analyzed statistically by SPSS (IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.). non parametric Mann Whitney u test was used.

Results

The mean age was 49.4 ± 19.7 (from 15 to 86) years, 18 patients were female (58.1%). The mean best-corrected visual acuity (BCVA) in LogMar was 0.5 ± 0.4 in group I, 0.6 ± 0.3 in group II, 0.4 ± 0.1 in group II and 0.0 ± 0.0 in group IV.

In group I (2 eyes CG grade IV, 2 eyes CG grade III, 4 eyes CG grade II, 4 eyes CG grade I) while in group II (1 eye with CG grade IV, 2 eyes CG grade III, 2 eyes with CG grade II, 2 eyes with CG grade II. In group III and IV, CG grade was 0(Table 3).

In group I (2 eyes KC grade IV, 2 eyes KC grade II, 8 eyes KC grade I) while in group III (1 eye KC grade IV, 2 eyes KC grade II, 3 eyes KC grade I). In group II and IV, KC grade was 0(Table 4).

In group I, we detected Fleischer ring (pigmented rings in the peripheral cornea) in 5 cases, Vogt's striae (fine, roughly vertically parallel striations in the of Descemet's membrane) in 3 cases and corneal scarring (superficial, para-central) in 2 cases. CGwere most densely distributed in the central cornea. Examination of all four mid-peripheral quadrants identified the superior cornea as being least severely affected in the all of our cases. Pentacam analysis of corneal thickness at the thinnest point of the affected eye in group I (KC+CG) was 479 ± 43 μ m,583 ± 49 μ min group II (CGonly), 475 ± 39 μ m in group III (KC only), and $567 \pm 22 \mu m$ in group IV. The mean pachymetry in group I was (479 μ m) which in comparison with group II (583 µm) is considered relatively low, but it is close to the mean pachymetry (475 µm) in group III.

The average central keratometric reading (Km) in group I was 47.6 ± 5.1 diopters (D), in group II was 43.8 ± 2.3 D, in group III was 49.3 ± 3.6 D, in group IV was 43.6 ± 1.6 D. The average keratometry in group I is relatively between that in group II, IV and group III.

Specular microscopy performed in group I (KC+CG) revealed abnormal endothelial mosaic with large dark areas consistent with guttata, pleomorphism, and polymegethism. Average endothelial cell count in the affected eyes was $2224 \pm$ $35/\text{mm}^2$ in group I,1862 ± 1120 /mm²in group II,2641 \pm 268/mm²in group III and 2875 \pm 260 /mm²in group IV (Table 5).

	8
Grade 0	No apparent disease. Up to 11 central guttae on each cornea;
Grade 1	Definitive onset of the disease. Twelve or more central, non-confluent guttae in at least one eye;
Grade 2	A zone of confluent central guttae 1 to 2 mm in horizontal width
Grade	A zone of confluent central guttae 2 to 5 mm wide
Grade	A zone of confluent central guttae greater than 5 mm wide
Grade	A zone of confluent central guttae greater than 5 mm wide plus edema of the corneal stroma and/or corneal epithelium

Table 1: Cornea guillata classification based on Golisch's modification Krachmer scale.

Table 2: Amsler-Krumeich classification of KC.						
Stage I	Eccentric steepening					
	Myopia and or astigmatism < 5.00 D					
	Mean central K reading < 48.00 D					
	No central corneal opacity					
	Myopia and or astigmatism 5.00 - 8.00 D					
Stage II	Mean central K reading \leq 53.00D					
Stage II	Minimum corneal thickness $\geq 400 \ \mu m$					
	No central corneal opacity					
	Myopia and or astigmatism 8.00 -10.00 D					
Stage III	Mean central K reading < 55.00					
Stage III	Minimum corneal thickness $<300 - 400 \ \mu m$					
	No central corneal opacity					
	Refraction not measurable					
Store W	Mean central K reading< 55.00					
Stage IV	Minimum corneal thickness 200 µm					
	Central corneal scar					

Table 3: Classification of Guttata patients.							
	CG grade 0	CG grade I	CG grade II	CG grade III	CG grade IV		
Group I (KC+CG)	0	4	4	2	2		
Group II (CG)	0	2	2	2	1		
Group III (KC)	6	0	0	0	0		
Group IV (Normal)	6	0	0	0	0		

Table 4: Classification of keratoconus patients.							
	KC grade 0	KC grade 1	KC grade 2	KC grade 3	KC grade 4		
Group I (KC+CG)	0	8	2	0	2		
Group II (CG)	7	0	0	0	0		
Group III (KC)	0	3	2	0	1		
Group IV (Normal)	6	0	0	0	0		

Table 5: Visual acuity, keratometry and pachymetry results of patients with keratoconus and cornea guttata in comparison with keratoconus only, cornea guttata only and normal.

•		Age	V.A. LogMar	K2	K1	K mean	K max	Pachymetry
	mean	50.7	0.5	49.7	45.7	47.6	57.0	479
$(Croup 1) VC \downarrow CC$	SD	16	0.4	5.1	5.3	5.1	11.0	43
(01000 I) KC + CO	Min	31	0.05	43.2	39.3	42.7	43.8	407
N = 12	Max	86	1.3	58.3	54.0	55.9	79.0	557
	mean	72.2	0.6	45.0	42.7	43.8	47.1	583
(Group II)	SD	11.5	0.3	2.6	2.6	2.3	3.6	49
CG Only	Min	55	0.2	42.5	40.2	41.7	43.5	538
N = 7	Max	81	1.0	49.4	47.0	48.2	52.9	665
	mean	34.8	0.4	51.8	47.3	49.3	56.4	475
(Group III)	SD	16.7	0.1	3.7	3.5	3.6	5.0	39
KC Only	Min	15	0.2	47.1	43.3	45.1	51.9	421
N = 6	Max	60	0.5	58.4	52.6	55.3	65.4	516
	mean	34.5	0.0	44.7	43.15	43.6	44.8	567
(Group IV)	SD	7.1	0.0	1.08	1.7	1.6	1.5	22
Normal	Min	25	0.0	42.9	40.3	41.8	42.5	539
N= 6	Max	43	0.0	45.6	45.0	45.2	46.4	593

Discussion

In the present study, thinning of the cornea caused by KC and endothelial corneal thickening secondary to endothelial dysfunction may combine to false normal corneal pachymetry and relatively higher VA in group I in comparison to group II. The average VA LogMar in group I was 0.5 whilein group II was 0.6 and in group III was 0.4 (p=0.01).

Thus, VA cannot be used as a predictor for the presence concomitant KC in the case of CG and the reverse is true. Consequently, despite the presence of two concomitant corneal pathologies, the visual acuitybeingmuch worth than in normal eyes, was less severely impaired than in KC only.

In our study, the normal mean central corneal thickness was 567 \pm 22 μ m. If we look only at the thinnest location measurements, one or both diagnosis may be missed, or the severity of either may be underestimated. This is critical in establishing aproper diagnosis. In group I, although CG grade IV was

present, the corneal thickness was below normal limits. Consequently, the presence of KC masked the change in corneal thickness made by CG.

Tomography allows for the construction of maps that characterize the front and back elevation of the cornea, along with a full corneal thickness map. Ramos et al reported KC with a pattern of more abrupt thickening from the thinnest point toward the periphery, while the opposite is observed in the evaluation of corneal edema. The combination of KC and Fuchs, however, may mask or even pseudonormalize these changes as long as both pathologic conditions are relatively mild.¹³

It is may be difficult to assess the progression of both diseases adequately. Increasing endothelial decompensationrelated thickening of the central cornea may mask the increasing thinning due to the progression of KC. In contrast, the increasing thinning of the paracentral cornea of progressive KC may mask the increasing corneal thickening due to severe

concomitant CG. Consequently, pachymetry should not be the only method in the evaluation of endothelial function in a case of KC. Likewise, if we only consider specular microscopy analysis of the corneal endothelium, the disease severity may be underestimated.

Genetic studies have evaluated the association of KC with FECD, but the details of both have not been fully explained. Mutations in a variety of genes have been proven or suggested to play a pathogenic role in FECD. The International Committee for Classification of Corneal Dystrophies (IC3D) classifies FECD in three categories: Category 1: A well-defined corneal dystrophy in which the gene has been mapped and identified and the specific mutations are known.; Category 2: A well-defined corneal dystrophy that has been mapped to one or more specific chromosomal loci, but the gene (s) remain (s) to be identified.; Category 3: A well-defined corneal dystrophy in which the disorder has not yet been mapped to a chromosomal locus.¹⁴

Conclusions

KC and CG can coexist in the same patient. This association can 'neutralize' pathologic changes that occur in both diseases, but it does not normalize tomographic properties. In particular, the progression of both entities may be masked by simultaneous fellow disease. It is critical to evaluate the endothelium in eyes with KC progression and surgical approachshouldonly bemade after complete ophthalmic examination, supplemented by corneal tomography, and corneal microscopy of the endothelium. Future examinations and gene analyses may provide the clues needed for better understanding of the underlying mechanisms that cause these associations of both corneal diseases in one eve.

References

- 1. Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. *Br J Ophthalmol* 2000; 84(8): 834-836.
- 2. Krachmer JH. Eye rubbing can cause keratoconus. *Cornea* 2004; 23(6): 539-540.
- 3. Thanos S, Oellers P, Meyer Zu Horste M, Prokosch V, Schlatt S, Seitz B *et al.* Role of

Thyroxine in the Development of Keratoconus. *Cornea* 2016; 35(10): 1338-1346.

- 4. Cremona FA, Ghosheh FR, Rapuano CJ, Eagle RC, Jr., Hammersmith KM, Laibson PR *et al.* Keratoconus associated with other corneal dystrophies. *Cornea* 2009; 28(2): 127-135.
- 5. Jurkunas U, Azar DT. Potential complications of ocular surgery in patients with coexistent keratoconus and Fuchs' endothelial dystrophy. *Ophthalmology* 2006; 113(12): 2187-2197.
- 6. Kitagawa K, Fujisawa A, Mizuno T, Sasaki K. Twenty-three cases of primary cornea guttata. *Jpn J Ophthalmol* 2001; 45(1): 93-98.
- Chiou AG, Kaufman SC, Beuerman RW, Ohta T, Soliman H, Kaufman HE. Confocal microscopy in cornea guttata and Fuchs' endothelial dystrophy. *Br J Ophthalmol* 1999; 83(2): 185-189.
- 8. Nielsen K, Hjortdal J, Pihlmann M, Corydon TJ. Update on the keratoconus genetics. *Acta Ophthalmol* 2013; 91(2): 106-113.
- 9. Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M. Combined anterior keratoconus and Fuchs' endothelial dystrophy: a report of two cases. *Clin Exp Optom* 2010; 93(4): 268-270.
- Gottsch JD, Sundin OH, Liu SH, Jun AS, Broman KW, Stark WJ *et al.* Inheritance of a novel COL8A2 mutation defines a distinct earlyonset subtype of fuchs corneal dystrophy. *Invest Ophthalmol Vis Sci* 2005; 46(6): 1934-1939.
- Krachmer JH, Purcell JJ, Jr., Young CW, Bucher KD. Corneal endothelial dystrophy. A study of 64 families. *Arch Ophthalmol* 1978; 96(11): 2036-2039.
- 12. Krumeich JH, Kezirian GM. Circular keratotomy to reduce astigmatism and improve vision in stage I and II keratoconus. *Journal of Refractive Surgery* 2009; 25(4): 357-365.
- 13. Ramos IC BM, Valbon BF, Luz A, Pimentel LN, Caldas DL, Ambrósio R Jr. Keratoconus associated with Corneal Guttata. *Int J Kerat Ect Cor Dis* 2012; 3(1): 173-178.
- Weiss JS, Moller HU, Aldave AJ, Seitz B, Bredrup C, Kivela T *et al.* IC3D classification of corneal dystrophies--edition 2. *Cornea* 2015; 34(2): 117-159.